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Abstract This work develops hybrid models for large-scale singular di�erential system and analyzes

their asymptotic properties. To take into consideration the discrete shifts in regime across which

the behavior of the corresponding dynamic systems is markedly di�erent, our goals are to develop

hybrid systems in which continuous dynamics are intertwined with discrete events under random-jump

disturbances and to reduce complexity of large-scale singular systems via singularly perturbed Markov

chains. To reduce the complexity of large-scale hybrid singular systems, two-time scale is used in the

formulation. Under general assumptions, limit behavior of the underlying system is examined. Using

weak convergence methods, it is shown that the systems can be approximated by limit systems in

which the coeÆcients are averaged out with respect to the quasi-stationary distributions. Since the

limit systems have fewer states, the complexity is much reduced.

Keywords: hybrid model, singular system, di�erential equation, singularly perturbed Markov

chain, weak convergence, averaging.

Singular systems of di�erential equations arise in various applications in physical sciences,

engineering, and economic systems. Due to their importance, such systems have been studied

extensively and employed in control and optimization tasks. For some of the recent literature,

we refer to refs. [1|4] among others. In these references, for a singular matrix A, a system

A _x+Bx = f(t); x(0) = x0; (0:1)

and/or the related control problems are dealt with. Many interesting and important results have

been obtained; a wide range of applications have been examined. The main e�ort up to date has

been devoted to deterministic systems, whereas formulation under random disturbances has not

received much attention, to the best of our knowledge. In this work, our goals are to develop

hybrid systems in which continuous dynamics are intertwined with discrete events under random

disturbances and to reduce complexity of large-scale singular systems via singularly perturbed

Markov chains.

Often the underlying dynamic systems of various real-world applications are not only time-

varying, but also associated with dramatic movements involving discontinuity, which are inu-

enced by uncertain, exogenous discrete events driven by random disturbances. Many of such

systems involve noise of pure jump type, especially for those arising in production planning, eco-

nomics, and stochastic networks. As a result, the parameters of the dynamic systems come from
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one of the di�erent regimes with transitions among regimes governed by an unobservable jump

process. To model such systems, Markovian formulations have been found to be useful. To better

reect reality and to produce mathematically tractable models, we introduce hybrid models of

singular di�erential systems in this paper. Our main motivation stems from taking discrete event

interventions into consideration. For example, let us consider a nation's economy, in which the

discrete events are coined by economists as discrete shifts. The evolution of the economy often

displays dramatic moves (ups or downs), which then is naturally modeled by a Markov chain.

Using such a premise, in lieu of considering a �xed matrix A in (0.1), we treat the case that A

is time-varying and depends on a continuous-time Markov chain, which is motivated by a wide

range of applications in stochastic networks, communication systems, production planning, and

manufacturing; see for example, refs. [5|7] and the references therein.

The rapid increase in computational capabilities and an increasingly quantitative approach

to problem solving have posed challenging tasks upon us since the underlying systems are fre-

quently large-scale ones. To incorporate various needs into the model, the underlying Markov

chain may have a large state space due to the complex nature of the system. To reduce the

complexity of such systems, we exploit the hierarchical structure of the underlying models. The

essence of the nearly completely decomposable matrix models, originating in Simon and Ando's

work[8] is that in a large-scale system, not all components of the system change at the same rate.

Thus it is helpful to model the system via time-scale separation. The resulting system becomes

one with both fast-time scale and slow-time scale, leading to a singular perturbation formulation.

Such ideas have been successfully used in control of large-scale dynamic systems and manufac-

turing; see, for example, refs. [5, 6, 9, 10] among others. One of the main components in these

works is modeling and analysis via the use of singularly perturbed Markov chains. Owing to

the prevalence in various applications, such singularly perturbed Markov chains have received

resurgent attention lately; see, for example, refs. [6, 7, 10|16], among others.

In this work, by means of hierarchical approach, decomposition, and aggregation, we propose

new switching models of singular di�erential systems under stochastic disturbances via time-scale

separation, resulting in models involving singularly perturbed Markov chains. To highlight the

two-time scale, we introduce a small parameter " > 0. To treat control and optimization problems

of such hybrid systems, it is foremost to have a thorough understanding of singular di�erential

systems under singularly perturbed Markovian disturbances. By focusing on the asymptotic

behavior of the systems as " ! 0, we use methods of weak convergence to derive limit results.

It is shown that the underlying systems can be approximated by limit systems in which the

coeÆcients are averaged out with respect to the quasi-stationary measures of the Markov chain.

Note that the small parameter " may not appear in the original physical problems. It is for

the reason of facilitating the analysis and hierarchical decomposition that we introduce it into

the systems. How small is an " considered to be small? In applications, constants such as

0:1 or 0:5 etc. could be considered as small enough. It mainly indicates the relative order of

magnitude in the formulation, and provides guidelines. The asymptotic results of the underlying

system (as " ! 0) give insights into the structure of the systems and provide heuristics for
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various applications. The averaging approach to be presented will be useful in construction of

asymptotic or nearly optimal controls of various systems.

The rest of the paper is arranged as follows. Section 1 presents the precise formulation of the

problem. Section 2 recalls some preliminary results on singular systems of di�erential equations

and singularly perturbed Markov chains. Section 3 is concerned with the asymptotic behavior

of singular di�erential systems under the inuence of singularly perturbed Markov chains. As

an application, Section 4 is devoted to an illustrative example; it presents a hybrid/switching

Leontief model and the corresponding asymptotic results. Finally, Section 5 concludes the paper

with a few further remarks. Throughout the paper, we use K to denote a generic positive

constant. Its value may change for di�erent usage. For z 2 Rr�l, we use z0 to denote its

transpose and jzj to denote its norm.

1 Preliminary results

1.1 Singular systems of di�erential equations

First, we recall a number of de�nitions. For more discussion on related issues, the reader is

referred to ref. [1]. For A 2 Rr�r, the index of A, denoted by Ind(A), is the least nonnegative

integer � such that N (A�) = N (A�+1). Let A 2 Rr�r with Ind(A) = �, dim R(A�) = `0, and

dim N (A�) = `1 (`0 + `1 = r), where R(A) and N (A) denote the range and null space of A,

respectively, and A = G

 
C 0

0 N

!
G�1, where C is an `0 � `0 nonsingular matrix and N is an

`1 � `1 nilpotent matrix with � =Ind(N). The Drazin inverse of A, denoted by AD, is de�ned

as AD = G

 
C�1 0

0 0

!
G�1.

For A;B 2 Rr�r, and an Rr-valued function f(�), consider

A _x+Bx = f(t); x(t0) = x0: (1:1)

The vector x0 is said to be a consistent initial vector if (1.1) has at least one solution. The

di�erential equation in (1.1) is tractable at t0 if the initial value problem has a unique solution

for each consistent initial vector x0. Moreover, if a system is tractable at a point t0, then it is

tractable at all t (see ref. [1]).

It follows that[1], the corresponding homogeneous di�erential equation (i.e. a di�erential

equation (1.1) with f(t) = 0) is tractable i� there is a � 2 C such that (�A+B)�1 exists.

De�ne

�A = (�A+B)�1A; �B = (�A+B)�1B; and �f = (�A+B)�1f; (1:2)

where � 2 C such that (�A+B) is nonsingular. Note that Theorem 3.1.2 in ref. [1] indicates that

the solution of singular systems of di�erential equations is independent of �. If the homogeneous
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equation is tractable, then the general solution is given by

x(t) = exp(��D

A
�B(t� t0))�A�

D

A
v; v 2 Rr: (1:3)

A vector c 2 Rr is a consistent initial vector for the homogeneous equation i�

c = �A�
D

A
c for c 2 R(��

A
) = R(�A�

D

A
);

where � =Ind(�A).

Suppose that f(t) is �-times continuously di�erentiable at t0 with � =Ind(�A). Then the

nonhomogeneous equation (1.1) has a general solution

x(t) = exp(��D

A
�B(t� t0))�A�

D

A
v +

Z
t

t0

exp(��D

A
�B(t� s))�D

A
�f (s)ds+ w(t);

w(t) = (I � �A�
D

A
)

��1X
i=0

(�1)i(�A�
D

B
)i�D

B
�
(i)

f
(t);

(1:4)

where v 2 Rr, and f (i) denotes the ith derivative of f(�). A vector c 2 Rr is a consistent initial

vector associated with t0 for the nonhomogeneous equation i� c is a solution of

(I � �A�
D

A
)(c� w(t0)) = 0:

Moreover, the nonhomogeneous equation is tractable at t0 and the unique solution of the initial

value problem with x(t0) = x0 is given by (1.4) with v = x0.

1.2 Singularly perturbed Markov chains

Our interests are mainly on nonstationary continuous-time Markov chains. Consider a

continuous-time Markov chain �(�) with �nite state space M = f1; � � � ;mg.

For i; j 2 M, with Q(t) = (qij(t)), for t > 0, for any real-valued function g on M and

i 2M, write

Q(t)g(�)(i) =
X
j2M

qij(t)g(j) =
X
j 6=i

qij(t)(g(j)� g(i)):

We say that Q(t), t > 0, is a generator of �(�) if qij(t) is bounded and Borel measurable, qij(t) > 0

for j 6= i, qii(t) = �
P

j 6=i qij(t), t > 0, and for any bounded real-valued function g de�ned onM

g(�(t))�

Z
t

0

Q(&)g(�)(�(&))d& (1:5)

is a martingale. A generator Q(t) is said to be weakly irreducible if, for each �xed t > 0, the

system of equations

�(t)Q(t) = 0;

mX
i=1

�i(t) = 1 (1:6)

has a unique solution �(t) = (�1(t); : : : ; �m(t)) and �i(t) > 0 for i = 1; : : : ;m. Such a solu-

tion is termed a quasi-stationary distribution (see ref. [6]). The modi�er \quasi-" is used since

�(t) is time dependent and it does not require all of its components be strictly positive. The

weak irreducibility, being �rst introduced in ref. [12], is a generalization of the usual notion

of irreducibility. For example,

 
�1 1

0 0

!
is not irreducible but it is weakly irreducible. Such
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extensions are needed and convenient for various applications. For further discussions on nonsta-

tionary Markov chains through piecewise deterministic process formulation, we refer the reader

to ref. [17].

2 Formulation

2.1 The model

Suppose that " > 0 is a small parameter, �"(t) is a continuous-time Markov chain with

�"(0) = �0 and �nite state space

M = M1 [ � � � [Ml [M�

= fs11; � � � ; s1m1
g [ � � � [ fsl1; � � � ; slml

g [ fs�1; � � � ; s�m�
g: (2.1)

Note that for each i = 1; � � � ; l, Mi is the subspace of states in the ith recurrent class, and M�

is the collection of transient states (To distinguish the recurrent and transient states, we use the

index � for the transient states.). Let the generator of �"(t) be

Q"(t) =
~Q(t)

"
+ Q̂(t) (2:2)

such that ~Q(t) and Q̂(t) are themselves generators and

~Q(t) =

0BBBBBBBBBBBBBBB@

~Q1(t)

~Q2(t)

. . .

~Ql(t)

~Q1
�(t)

~Q2
�(t) � � � ~Ql

�(t)
~Q�(t)

1CCCCCCCCCCCCCCCA
: (2:3)

In view of (2.2) and (2.3), �"(�) is a Markov chain involving weak and strong interactions. Within

each Mi, the transitions take place in a fast pace, whereas the jumps from Mi to Mj occur

relatively infrequently.

For 0 < T < 1, we work with the time horizon [0; T ]. Consider the singular systems of

di�erential equations of the form

A(�"(t)) _x" +B(�"(t))x" = f(t; �"(t)); x"(0) = x0: (2:4)

In (2.4), x(t) 2 Rr, f(�) is an Rr-valued function, and for each � 2 M, A(�) and B(�) are r � r

matrices. The precise conditions of A(�), B(�), and f(�) will be given in the sequel.

Since �"(�) is a pure jump process, its sample paths are piecewise constant. As a result, in

lieu of a �xed set of coeÆcients, (2.4) has card(M) number of regimes (or con�gurations) for the

system coeÆcients, where card(M) denotes the cardinality of M. Between two jumps of �"(�),

(2.4) is a deterministic system, which is an example of nowadays popular hybrid systems.

2.2 Rationale

The form (2.2) and (2.3) of the generator is originated from hierarchical decomposition.

Suppose that we have a large-scale system. Model the disturbances by a �nite-state Markov
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chain. Since not all states can be transient, there is at least one recurrent state (see ref. [18]). In

accordance with the transition rates of the recurrent states, the recurrent states can be grouped

into l recurrent classes. The remaining transient states are inM�. The precise conditions of the

generator will be spelt out later.

In the subsequent analysis, it is required that " ! 0. In the actual applications, however,

" > 0 is simply a small positive constant. Ref. [6] provides an illustrative example on how

to convert a generator into the form (2.2). The procedure uses an elementary matrix row and

column operations.

We concern ourselves with the case that the state space M is large, i.e. M contains a large

number of elements. The amount of computation in handling the underlying system could be

intensive. Rather than treating the system directly, we aggregate the states in each recurrent

class into one state, resulting in an aggregated process with state space having l elements. Using

such an aggregation, we shall derive a limit system that depends only on l possible regimes or

con�gurations. Suppose that card(M) = m and l � m. Then the complexity is substantially

reduced.

2.3 Assumptions

We make the following assumptions. The �rst condition is about the singularly perturbed

Markov chain, and the second one is concerned with system (2.4).

(A1) The generators ~Q(�) and Q̂(�) are uniformly bounded and Borel measurable such that

(a) for each i = 1; � � � ; l, ~Qi(t) is weakly irreducible;

(b) ~Q�(t) is asymptotically stable, i.e. all of its eigenvalues belong to the left half of the

complex plane;

(c) for each i = 1; � � � ; l, there exist constant matrices Gi

� 2 R
m��mi , G� 2 R

m��m� , and

matrix-valued function B(t) 2 Rm��m� such that B(�) is Lipschitz continuous, and

~Qi

�(t) = B(t)Gi

� and ~Q�(t) = B(t)G�:

(A2) For each � 2M,

(a) there exists �(�) such that �(�)A(�) +B(�) is nonsingular;

(b) f(�; �) is (�+ 1)-times continuously di�erentiable, where

� = max
�2M

Ind
�
(�(�)A(�) +B(�))�1A(�)

�
:

Remark 2.1. If the last row of ~Q(t) disappears (i.e. the corresponding chain has only

recurrent states), then the Lipschitz condition in (A1) is no longer needed (see ref. [16] for further

details). If a full asymptotic expansion of the solution of the corresponding forward equation

(see (3.1) in what follows) is desired, more smoothness of ~Q(t) and Q̂(t) will be needed (see ref.

[6]).

To see the implication of (A1) (c), for i = 1; � � � ; l, de�ne

ami
(t) = � ~Q�1� (t) ~Qi

�(t)11mi
: (2:5)

Using (A1) (c), it is easily seen that amk
(t) = amk

is independent of t and is an (m� � 1)-vector
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with ami
= (ami;1; � � � ; ami;m�

)0. Moreover (see ref. [15]),

ami;j
> 0; and

lX
i=1

ami;j
= 1 for each j = 1; � � � ;m�: (2:6)

Thus for each t 2 [0; T ] and j = 1; � � � ;m�, (am1;j
; � � � ; aml;j

) is a probability row vector. Its

component ami;j
represents the probability that the chain jumps from the jth transient state s�j

to the ith recurrent class Mi.

If ~Q(t) consists of only one irreducible block, the corresponding system is one subject to fast

variations. In this case, the asymptotic study to be presented in what follows still provides a

reduction in complexity. It indicates that one can ignore the detailed variations and concentrate

only on the average e�ect.

(A2) is a suÆcient condition for tractability. That is, (A2) implies that the system under

consideration is tractable.

The formulation is completed. We are now in a position to analyze the underlying system.

3 Limit behavior

This section is divided into four parts. We �rst recall several results concerning the singularly

perturbed Markov chains to be used in our study. Then we obtain the tightness of the process

fx"(�)g. Next, we derive the weak convergence of this process. Finally, we treat a special case

in which �Q(t) consists of a single weakly irreducible block. In what follows, for an integer `,

by D`[0; T ], we mean the space of R`-valued functions that are right continuous and have left

limits, endowed with the Skorohod topology (see refs. [19|22] among others).

3.1 Asymptotic properties of �"(�)

Denote p"(t) = (P (�"(t) = 1); � � � ; P (�"(t) = m)) 2 R1�m: Then the probability vector

p"(�) satis�es the forward equation

dp"(t)

dt
= p"(t)Q"(t);

p"(0) = p0; p0;i > 0;

mX
i=1

p0;i = 1;

(3:1)

p0;i denotes the ith component of p0.

De�ne

~11� =

0BBBBBBBBBBB@

11m1

. . .

11ml

am1
� � � aml

0m��m�

1CCCCCCCCCCCA
;

~11 = diag(11m1
; � � � ; 11ml

); (3.2)

where 11� is an � � 1 vector with all components being 1, diag(�1; � � � ;�l) is a block diagonal

matrix with matrix entries �1; � � � ;�l, 0m��m�
is an m� �m� zero matrix, and ami

is given by
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(2.6). For each i = 1; : : : ; l, denote the quasi-stationary distribution for ~Qi(t) by �i(t). Using

the partition form

Q̂(t) =

0BB@ Q̂11(t) Q̂12(t)

Q̂21(t) Q̂22(t)

1CCA ;

with

Q̂11(t) 2 R(m�m�)�(m�m�); Q̂12(t) 2 R(m�m�)�m� ;

Q̂21(t) 2 Rm��(m�m�); and Q̂22(t) 2 Rm��m� ;

write

�Q�(t) = diag(�1(t); � � � ; �l(t))( ~Q11(t)11 + ~Q12(t)(am1
; � � � ; aml

)); (3:3)

and

�Q(t) = diag( �Q�(t); 0m��m�
): (3:4)

De�ne an aggregated process ��"(�) by

��"(t) =

(
i; if �"(t) 2Mi;

Uj ; if �"(t) = s�j;

where

Uj =

lX
k=1

kI
f
P

k�1

i=1
ami;j

6U6
P

k

k=1
ami;j

g
;

and U is a random variable uniformly distributed in [0; 1]. Note that we only aggregate the states

in each recurrent class since if the process is currently in one of the transient states, in a short

period of time, it will jump into one of the recurrent classes.

For each i = 1; � � � ; l; �, j = 1; � � � ;mi, de�ne the occupation measures by

o"
ij
(t) =

8>>>><>>>>:

Z
t

0

If�"(s)=sijg � �i
j
(s)If�"(s)2Mig

ds; if i = 1; � � � ; l;

Z
t

0

If�"(s)=s�jgds; if i = �:

(3:5)

We now present results on the solution of the forward equation, the asymptotics of the occupation

measures, and the weak convergence of the aggregated process.

Theorem 3.1. Assume (A1) and (A2). Then

(i) p"(t)! p(t) as "! 0 for all t 2 [0; T ], where

p(t) = (�(t)diag(�1(t); � � � ; �l(t)); 01�m�
) (3:6)

and where

_�(t) = �(t) �Q�(t); �(0) = (p0�11�)r (3:7)
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with �(t) = (�1(t); : : : ; �l(t)) 2 R
1�l; and (p0�11�)r being the partitioned vector corresponding to

the recurrent part.

(ii) For each i = 1; � � � ; l; �,, j = 1; � � � ;mi,

sup
t2[0;T ]

E[o"
ij
(t)]2 ! 0 as "! 0: (3:8)

(iii) ��"(�) converges weakly to ��(�), a Markov chain generated by �Q�(t).

Remark 3.1. The proofs of the three parts of the theorem can be found in that of

Theorem 3.4, Theorem 4.2, and Theorem 4.3, in ref. [16], respectively. Note that the convergence

in assertion (i) above is in the sense of pointwise convergence. The o"
ij
(t) is termed an occupation

measure since it measures the amount of time the underlying Markov chain spends in a given

state. Assertion (ii) gives a mean squares convergence of the sequence of unscaled occupation

measures. Although the aggregated process ��"(�) may not be Markov, its weak limit turns out

to be a Markov chain whose generator is an \average" of the generator Q̂(t) with respect to the

quasi-stationary distributions.

3.2 Tightness

We aim to prove the weak convergence of x"(�). To do so, we need to verify the tightness of

the underlying process and then characterize the limit. Rather than working with x"(�), we use

a device known as N -truncation (see ref. [21] or [22]) and work with a truncated process. We

show that the truncated process is tight and converges weakly. Finally, by using the uniqueness

of the solution (tractability), we conclude the proof.

To proceed, for any 0 < N , let SN = fx; jxj 6 Ng. That is, SN is the sphere with radius N

centered at the origin. The process x";N (�) is an N -truncation of x"(�), if

lim
K0!1

lim sup
"!0

P ( sup
t2[0;T ]

jx";N (t)j > K0) = 0;

and x";N (t) = x"(t) up until the �rst exit from SN . De�ne a smooth real-valued function qN (�)

as qN (x) = 1 if x 2 SN ; q
N (x) = 0 if x 2 Rr � SN+1. Consider

A(�"(t)) _x";N (t) +B(�"(t))x";N (t)qN(x";N (t)) = f(t; �"(t))qN(x";N (t));

x";N (0) = x0:

(3:9)

Thus, x";N (�) is a process with compact support; it stops at the �rst time SN+1 exits, equal

to x"(�) up until the �rst exit from SN , and \decays" between the spheres SN and SN+1. The

truncation device enables us to work with a bounded process and to obtain the desired result for

such a process.

Theorem 3.2. Assume (A1) and (A2). Then fx";N (�)g given by (3.9) is tight inDr[0; T ].

Proof. Due to the truncation, fx";N (�)g is bounded. Suppose that the nth jump of �"(t)

happens at the moment � "
n
with � "0 = 0. Then f� "

n
g is a sequence of F"

t
-stopping times, where

F"

t
is the �-algebra generated by f�"(s); s 6 tg (If the generators are constants, the distribution

of �n+1 � �n is well known and is exponentially distributed. For time-dependent generators, the

distribution of �n+1 � �n can be found in ref. [17]; see also ref. [6] for more details.). For any
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t 2 [0; T ], t will be between two jump times, i.e. there is an n such that �n 6 t < �n+1^T , where

�n+1 ^ T = min(�n+1; T ). Assuming �"(�n) = sij for some i = 1; � � � ; l or i = �, j = 1; � � � ;mi,

then �"(t) = sij for all t 2 [�n; �n+1 ^ T ). By (A2), the system is tractable at �n, and hence

x";N (t) = exp(��D

A
(sij)�B(sij)(t� � "

n
))�A(sij)�

D

A
(sij)x

";N (�n)

+

Z
t

�n

exp(��D

A
(sij)�B(sij)(t� s))�D

A
(sij)�f (s; sij)ds

+ (I � �A(sij)�
D

A
(sij))

k�1X
�=0

(�1)�(�A(sij)�
D

B
(sij))

�
�
D

B
(sij)�

(�)

f
(t; sij); (3.10)

where �A(sij), �B(sij), and �f (t; sij) are de�ned in (1.2). Di�erentiating (3.10) with respect to

t yields that

_x";N (t) =� �A(sij)�
D

A
(sij) exp(��

D

A
(sij)�B(sij)(t� � "

n
))�A(sij)�

D

A
(sij)x

";N (�n)

� �A(sij)�
D

A
(sij)

Z
t

�n

exp(��D

A
(sij)�B(sij)(t� s))�D

A
(sij)�f (s; sij)ds

+ �D

A
(sij)�f (t; sij)

+ (I � �A(sij)�
D

A
(sij))

�X
�=1

(�1)�(�A(sij)�
D

B
(sij))

�
�
D

B
(sij)�

(�)

f
(t; sij): (3.11)

The de�nition of x";N (�), the condition on f(�), and the familiar triangle inequality then imply

sup
t2[0;T ] j _x

";N (t)j 6 K.

To proceed, by (A2), for any t 2 [0; T ], there is a �(�"(t)) such that �(�"(t))A(�"(t))

+B(�"(t)) is invertible. Thus (3.9) leads to

_x";N (t) =� [�(�"(t))A(�"(t)) +B(�"(t))]�1�(�"(t))B(�"(t))x";N (t)qN(x";N (t))

+ [�(�"(t))A(�"(t)) +B(�"(t))]�1�(�"(t))f(t; �"(t))qN(x";N (t))

+ [�(�"(t))A(�"(t)) +B(�"(t))]�1B(�"(t)) _x";N (t): (3.12)

It then follows

x";N (t) =x0 �

Z
t

0

[�(�"(s))A(�"(s)) +B(�"(s))]�1�(�"(s))B(�"(s))x";N (s)qN(x";N (s))ds

+

Z
t

0

[�(�"(s))A(�"(s)) +B(�"(s))]�1�(�"(s))f(s; �"(s))qN(x";N (s))ds

+

Z
t

0

[�(�"(s))A(�"(s)) +B(�"(s))]�1B(�"(s)) _x";N (s)ds: (3.13)

For any Æ > 0 and t; u > 0 with 0 6 u < Æ, using (3.13), we have

E"

t
jx";N (t+ u)� x";N (t)j2

63E"

t

����Z t+u

t

[�(�"(s))A(�"(s)) +B(�"(s))]�1�(�"(s))B(�"(s))x";N (s)qN(x";N (s))ds

����2
+ 3E"

t

����Z t+u

t

[�(�"(s))A(�"(s)) +B(�"(s))]�1�(�"(s))f(s; �"(s))qN(x";N (s))ds

����2
+ 3E"

t

����Z t+u

t

[�(�"(s))A(�"(s)) +B(�"(s))]�1B(�"(s)) _x";N (s)ds

����2
6�"(t; u); (3.14)
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where �"(t; u) is F"

t
-measurable and

lim sup
"!0

E�"(t; u) = O(u2) = O(Æ2): (3.15)

In the above, we have used the boundedness of x";N (�) and _x";N (�), the boundedness of A(�) and

B(�), the continuity of f(�; �) for each � 2M, and

E"

t

����Z t+u

t

h(s)ds

����2 6 �"(t; u)

such that (3.15) holds, where h(s) is any one of the following functions

[�(�"(s))A(�"(s)) +B(�"(s))]�1�(�"(s))B(�"(s))x";N (s)qN (x";N (s));

[�(�"(s))A(�"(s)) +B(�"(s))]�1�(�"(s))f(s; �"(s))qN (x";N (s));

[�(�"(s))A(�"(s)) +B(�"(s))]�1B(�"(s)) _x";N (s):

It follows

lim
Æ!0

lim sup
"!0

Ejx";N (t+ u)� x";N (t)j2 6 lim
Æ!0

O(Æ2) = 0: (3.16)

The desired tightness of fx";N (�)g then follows from the tightness criteria (see refs. [20, 21]).

Since fx";N (�)g is tight, we can extract a weakly convergent subsequence by Prohorov's

theorem (see refs. [19, 20]). Select such a convergent subsequence. For notational simplicity,

still denote the sequence by x";N (�) (i.e. still use " as its index). In view of (3.15), we also have

the following corollary (see Corollary in ref. [20]).

Corollary 3.1. Under the conditions of Theorem 3.2, the limit of x";N (�) has continuous

sample paths w.p.1 (with probability one).

3.3 Weak convergence

Theorem 3.3. Under the conditions of Theorem 3.2, x";N (�) converges weakly to xN (�),

a solution of the singular system of di�erential equations

A(�(t)) _xN +B(�(t))xNqN (xN ) = f(t; �(t))qN (xN ); x(0) = x0; (3:17)

where

A(�(t)) =

lX
i=1

miX
j=1

�i
j
(t)A(sij);

B(�(t)) =

lX
i=1

miX
j=1

�i
j
(t)B(sij); (3.18)

f(t; �(t)) =

lX
i=1

miX
j=1

�i
j
(t)f(t; sij):

Proof. In view of Corollary 3.1, the limit of the weakly convergent subsequence has

continuous paths w.p.1. We proceed to characterize the limit process.

Integrating (2.4) leads toZ
t

0

A(�"(s)) _x";N (s)ds+

Z
t

0

B(�"(s))x";N (s)qN (x";N (s))ds

=
R
t

0
f(s; �"(s))qN(x";N (s))ds: (3.19)
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Owing to the piecewise constant property of A(�"(t)), we can write the system as

lX
i=1

miX
j=1

Z
t

0

A(sij) _x
";N (s)If�"(s)=sijgds+

m�X
j=1

Z
t

0

A(s�j) _x
";N (s)If�"(s)=s�jgds

=�

lX
i=1

miX
j=1

Z
t

0

B(sij)x
";N (s)qN (x";N (s))If�"(s)=sijgds

�

m�X
j=1

Z
t

0

B(s�j)x
";N (s)qN (x";N (s))If�"(s)=s�jgds

+

lX
i=1

miX
j=1

Z
t

0

f(s; sij)q
N (x";N (s))If�"(s)=sijgds

+

m�X
j=1

Z
t

0

f(s; s�j)q
N (x";N (s))If�"(s)=s�jgds: (3.20)

To proceed, we treat each of the terms in (3.20) separately. First,

lX
i=1

miX
j=1

Z
t

0

A(sij) _x
";N (s)If�"(s)=sijgds

=

lX
i=1

miX
j=1

A(sij)

Z
t

0

_x";N (s)[If�"(s)=sijg � �i
j
(s)If�"(s)2Mig

]ds

+

lX
i=1

miX
j=1

A(sij)

Z
t

0

_x";N (s)�i
j
(s)If�"(s)2Mig

ds: (3.21)

Next, an integration by parts leads to

E

����Z t

0

_x";N (s)[If�"(s)=sijg � �i
j
(s)If�"(s)2Mig

]ds

����
6E

���� _x";N (t)Z t

0

[If�"(s)=sijg � �i
j
(s)If�"(s)2Mig

]ds

����
+ E

����Z t

0

�Z
s

0

[If�"(u)=sijg � �i
j
(u)If�"(u)2Mig

]du

�
�x";N (s)ds

���� :
Similar to (3.10) and (3.11), it can be veri�ed that sup

t2[0;T ] j�x
";N (t)j 6 K. Then by the

boundedness of �x";N (s) and applying Theorem 3.1, in particular, (3.8), as "! 0, we obtain

E

����Z t

0

_x";N (s)[If�"(s)=sijg � �i
j
(s)If�"(s)2Mig

]ds

����! 0;

and the limit is uniformly in t 2 [0; T ]. It follows from (3.21),

lX
i=1

miX
j=1

Z
t

0

A(sij) _x
";N (s)If�"(s)=sijgds

=

lX
i=1

miX
j=1

Z
t

0

A(sij) _x
";N (s)�i

j
(s)If�"(s)2Mig

ds+ o(1); (3.22)
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where as "! 0, o(1)! 0 in probability uniformly in t 2 [0; T ]. Likewise,
lX

i=1

miX
j=1

Z
t

0

B(sij)x
";N (s)qN (x";N (s))If�"(s)=sijgds

=

lX
i=1

miX
j=1

Z
t

0

B(sij)x
";N (s)qN (x";N (s))�i

j
(s)If�"(s)2Mig

ds+ o(1);

lX
i=1

miX
j=1

Z
t

0

f(s; sij)q
N (x";N (s))If�"(s)=sijgds

=

lX
i=1

miX
j=1

Z
t

0

f(s; sij)q
N (x";N (s))�i

j
(s)If�"(s)2Mig

ds+ o(1); (3.23)

where as "! 0, o(1)! 0 in probability uniformly in t 2 [0; T ].

By virtue of Theorem 3.1 (iii) and using (3.5), similar to the derivations of (3.21) and (3.22),

as "! 0,
m�X
j=1

Z
t

0

A(s�j) _x
";N (s)If�"(s)=s�jgds! 0 in probability,

m�X
j=1

Z
t

0

B(s�j)x
";N (s)qN (x";N (s))If�"(s)=s�jgds! 0 in probability; (3.24)

m�X
j=1

Z
t

0

f(s; s�j)q
N (x";N (s))If�"(s)=s�jgds! 0 in probability:

Thus the transient states are asymptotically unimportant.

Working with (3.22), by virtue of the weak convergence of x";N (�) to xN (�) and the Skorohod

representation, we may assume that x";N (�) converges to xN (�) with probability one, and the con-

vergence is uniform on any bounded time interval. In addition, the weak convergence of �"(�) (see

Theorem 3.1 (iii)) and the Skorohod representation imply that If�"(s)2Mig
= If�"(s)=ig converges

to If�(s)=ig. In addition, since �"(�) has piecewise constant sample paths, (d=dt)A(�"(t)) = 0

for almost all t 2 [0; T ]. Therefore, as "! 0,
lX

i=1

miX
j=1

Z
t

0

A(sij) _x
";N (s)�i

j
(s)If�(s)=igds

=

lX
i=1

miX
j=1

A(sij)x
";N (t)�i

j
(t)If�"(t)2Mig

�

lX
i=1

miX
j=1

A(sij)x0�
i

j
(0)If�"(0)2Mig

!

lX
i=1

miX
j=1

A(sij)x
N (t)�i

j
(t)If�(t)=ig �

lX
i=1

miX
j=1

A(sij)x0�
i

j
(0)If�(0)=ig: (3.25)

Similarly, as "! 0,
lX

i=1

miX
j=1

Z
t

0

B(sij)x
";N (s)qN (x";N (s))�i

j
(s)If�"(s)=igds

!

lX
i=1

miX
j=1

Z
t

0

B(sij)x
N (s)qN(xN (s))�i

j
(s)If�(s)=igds; (3.26)
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and
lX

i=1

miX
j=1

Z
t

0

f(s; sij)q
N (x";N (s))�i

j
(s)If�"(s)=igds

!

lX
i=1

miX
j=1

Z
t

0

f(s; sij)q
N (xN (s))�i

j
(s)If�(s)=igds: (3.27)

Combining (3.25)|(3.27), we obtain the equation satis�ed by the limit xN (�), namely,

A(�(s))xN (s) = A(�(0))x0 �

Z
t

0

B(�(s))xN (s)qN(xN (s))ds

+

Z
t

0

f(s; �(s))qN (xN (s))ds: (3.28)

The desired result thus follows.

Next, we let N ! 1 and conclude that xN (�) ! x(�) and hence the weak convergence of

x"(�) to x(�). The proof of the following theorem uses the measures induced by xN (�) and x(�)

and the tractability. The details are similar to that of ref. [21] and are omitted.

Theorem 3.4. Suppose that (A1) and (A2) are satis�ed. Then the untruncated process

x"(�) given in (2.4) is also tight in Dr[0; T ], and x"(�) converges weakly to x(�), a solution of the

di�erential system

A(�(t)) _x+B(�(t))x = f(t; �(t)); x(0) = x0; (3.29)

where A, B, and f are de�ned in (3.18).

3.4 Limit result under weak irreducibility

In the previous section, we have derived limit results for singular systems under Markovian

perturbation with generator Q"(t) given by (2.2) and (2.3). We now consider a special case,

namely, eQ(t) in (2.3) has only one weakly irreducible block. To �x the notation, suppose that

Q"(t) = Q(t)=" + Q0(t), where Q(t) is weakly irreducible. Now, all the states are recurrent.

Moreover, it is easily seen that for suÆciently small " > 0, Q"(t) is also weakly irreducible.

We can now apply the results obtained in Theorem 3.2 and Theorem 3.3. Let the state space

of �"(�) be M = f1; : : : ;mg and the quasi-stationary distribution corresponding to Q(t) be

�(t) = (�1; : : : ; �m) 2 IR1�m. We obtain the following theorem.

Theorem 3.5. Suppose that the conditions of Theorem 3.3 are satis�ed with eQ(t) andbQ(t) replaced by Q(t) and Q0(t) and with the Lipschitz continuity in (A1) being deleted. Then

x"(�) is tight in Dr[0; T ] and x"(�) converges weakly to x(�), which is a solution of

A(s) _x(s) +B(s)x(s) = f(s); x(0) = x0; (3.30)

where

A(t) =

mX
�=1

��(t)A(�); B(t) =

mX
�=1

��(t)B(�); f(t) =

mX
�=1

��(t)f(t; �): (3.31)

Remark 3.2. Note that in this case, the limit system is a deterministic one. Moreover,

if Q(t) = Q, a constant matrix, explicit form of solution can be given. The solution of (3.30) is
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given by

x(t) = exp(��D

A
�
B
t)�

A
�
D

A
x0 +

R
t

0
exp(��D

A
�
B
(t� s))�D

A
�
f
(s)ds+ w(t);

w(t) = (I � �
A
�
D

A
)
P

��1

i=0 (�1)
i(�

A
�
D

B
)i�D

B
�
(i)

f
(t):

(3:32)

4 Hybrid/switching Leontief models

The well-known Leontief model is a dynamic system of a multisector economy (see, for

example, ref. [23]). The traditional setup can be stated as follows. Suppose that there are r

sectors. Let xi(t) be the output of sector i at time t and Di(t) the demand for the product of

sector i at time t. Denote x(t) = (x1(t); � � � ; xr(t))
0 2 IRr and D(t) = (D1(t); � � � ;Dr(t))

0 2 IRr:

Let aij be the amount of commodity i that sector j needs to produce and denote A = (aij). If

a given sector does not produce a commodity, then A may have a zero row. Thus, A is often a

singular matrix. Denote by bij the proportion of commodity j that is transferred to commodity

i. The matrix B = (bij) is termed a Leontief input-output matrix. The Leontief dynamic model

is given by

A _x = (I �B)x+D(t); (4.1)

with A being a singular matrix.

In the classical Leontief model, the coeÆcients are �xed. Nevertheless, in reality, more often

than not, they are changing with respect to time depending on the trend of the economy. Not

only are A, B, and D time varying, but also they are subject to discrete shifts in regime-episodes

across which the behavior of the corresponding dynamic systems is markedly di�erent. As a

result, a promising alternative than the traditional model is to allow for the possibility of sudden,

discrete changes in the values of the parameters resulting in a \hybrid" or \switching model"

governed by a Markov chain. In what follows, we propose a hybrid Leontief model with switching

regime. The premise of our model is that many of the important movements in economy arise

from discrete events. A nation's economy sometimes appear quite calm and at other instances

are rather volatile. To describe how this volatility changes over time is by far important. It is

easily seen that monetary, �scal, or income policies, often change in a discontinuous fashion with

jump sample paths, which is often referred to as shocks in economics. Economists cannot observe

these shifts directly, so these discrete events are governed by hidden random processes. Since the

late 1980s and early 1990s, increasing interests on using Markov-based models in economics have

been shown. Although most of these e�orts are devoted to time series analysis (see refs. [24|27]

and the references therein), it is conceivable that the use of Markov-based models will play a more

prominent role in the near future. Similar to the consideration of stock market, a continuous-time

Markov chain can be used to model the trend of the economy. To illustrate, consider a simple

example in which the economy has two possible \states," fast growth phase (denoted by 2) and

slow growth phase (denoted by 1). At any given time t, the economy will be in either the fast

growth state or the slow growth state governed by the outcome of a Markov chain. Similarly,

consider another example with the use of unemployment data, the economy may be said to be
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in state 1 if the unemployment rate is rising and in state 2 if the unemployment rate is falling.

Corresponding to the two states, either for the economic growth or for the unemployment rates,

the regimes or con�gurations of system (4.1) will naturally di�er resulting in di�erent coeÆcients

of the linear equations for di�erent regimes. That is, the matrices A, B, and D vary with respect

to di�erent regimes governed by a Markov chain �(�). More generally, the economy can have a

number of states instead of just two states (e.g. di�erent levels of increases and decreases). This

then leads to a hybrid/switching model modulated by a Markov chain with �nite state space.

Our next concern is the reduction of complexity. In a multi-sector economy, the state space

of �(�) is likely to be very large due to the rapid growth in science and technology. The large

number of states of the underlying chain gives a detailed representation of the position of the

economy. Nevertheless, the large-scale nature of the system makes the design and control of such

systems very diÆcult tasks. To reduce the complexity of the system, we observe that not all

states in the system change at the same speed. Some of them vary rapidly and others change

slowly. The inherent fast and slow time scales give us the possibility of grouping the states in the

systems in accordance with their transition rates. We introduce a small parameter " > 0, and

let �(t) = �"(t) with the generator given by (2.2) and eQ(t) speci�ed by (2.3). Suppose that we

want to control a hybrid system in which the state space of M consists of m elements, where m

is a large number. Using appropriate asymptotic analysis, instead, we can consider a \reduced"

system whose state space consists of only l elements. If l � m, the complexity of the task is

dramatically reduced.

In the asymptotic analysis, to obtain a rigorous result, it is necessary to consider the limit

as "! 0. In the actual applications, " could be a constant; it need not go to 0. The asymptotic

result, however, renders guidance on the control, optimization, and design of the actual system.

For further discussions on the interpretation of the time scale separation, see ref. [6].

Using the hybrid/switching Markov chain �"(t), we consider the following hybrid Leontief

model

A(�"(t)) _x"(t) = (I �B(�"(t)))x"(t) +D(t; �"(t));

x"(0) = x0:

(4:2)

Assume that conditions (A1) and (A2) hold for the continuous-time model (4.2). Then the weak

convergence results discussed in the previous sections hold. We have the following limit result.

Theorem 4.1. Under the conditions of Theorem 3.2, fx"(�)g given by (4.2) is tight

in Dr[0; T ], and x"(�) converges weakly to x(�), which is a solution of the following singular

di�erential equation

A(�(t)) _x(t) = (I �B(�(t)))x(t) +D(t; �(t));

x(0) = x0;

(4:3)

where A(�(t)), B(�(t)), and D(t; �(t)) are as de�ned in (3.18) with f(t; �(t)) replaced by

D(t; �(t)).
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Under the conditions of Theorem 3.5, the weak limit is given by

A(t) _x(t) = (I �B(t))x(t) +D(t);

x(0) = x0;

(4:4)

where A(t), B(t), and D(t) are as de�ned in (3.31) with f(t) replaced by D(t).

Remark 4.1. Let us give some economic implication of the results obtained. First, the

original Leontief model (4.1) is purely deterministic. Thus it may not respond to any stochastic

changes and random uctuations. It appears that a major factor that dominates the states of

economy is the trends of the general economy. By using the model (4.2), we consider a re�nement

of the well-known Leontief model.

The limit systems both under weak irreducibility (see (4.4)) and multi-block eQ(t) (see (4.3))
present a reduction of complexity. The keyword is averaging. The weak irreducible case cor-

responds to the underlying system that undergoes rapid variations; the limit system is a de-

terministic one. It indicates we can ignore the detailed uctuations in the actual system, and

examine only its average. In the case of a multi-block eQ(t), we are interested in the situation

that card(M) is fairly large, which follows a realistic consideration of complex economic systems.

If card(M) �card(M), the complexity of the underlying system is much reduced by means of

the averaging approach.

5 Further remarks

This paper has been devoted to singular systems of di�erential equations. We have focused

on two main points. The �rst one is to develop hybrid models of singular di�erential systems

driven by random disturbances. The second one is the reduction of complexity of large-scale

singular systems. Here the machinery we are using is the hierarchical approach via singular

perturbation methods. Future work can be directed to the control and optimization problems of

large-scale singular systems of di�erential equations and to nonlinear singular systems.
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